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Memory Across Eye-Movements: 1/ f Dynamic
in Visual Search

Deborah J. Aks,1,4 Gregory J. Zelinsky,2 and Julien C. Sprott3

The ubiquity of apparently random behavior in visual search (e.g., Horowitz
& Wolfe, 1998) has led to our proposal that the human oculomotor system has
subtle deterministic properties that underlie its complex behavior. We report
the results of one subject’s performance in a challenging search task in which
10,215 fixations were accumulated. A number of statistical and spectral tests
revealed both fractal and 1/f structure. First, scaling properties emerged in
differences across eye positions and their relative dispersion (SD/M)—both
decreasing over time. Fractal microstructure also emerged in an iterated func-
tion systems test and delay plot. Power spectra obtained from the Fourier
analysis of fixations produced brown (1/f2) noise and the spectra of differ-
ences across eye positions showed 1/f (pink) noise. Thus, while the sequence of
absolute eye positions resembles a random walk, the differences in fixations
reflect a longer-term dynamic of 1/f pink noise. These results suggest that
memory across eye-movements may serve to facilitate our ability to select out
useful information from the environment. The 1/f patterns in relative eye posi-
tions together with models of complex systems (e.g., Bak, Tang & Wiesenfeld,
1987) suggest that our oculomotor system may produce a complex and self-
organizing search pattern providing maximum coverage with minimal effort.
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A classic problem in the study of perception centers on our ability to
perceive a stable world despite the dynamic nature of the retinal image.
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Various approaches have been taken to solve this problem, but the most
common, in the eye-movement literature, appeals to at least one of three
key mechanisms: First, the blurred retinal image that occurs a few times
per second is thought to be masked by a mechanism of saccadic suppression.
Thus, the “smearing” effect of the 30 ms saccade is eliminated through mask-
ing (e.g., Burr, 1980; Matin, 1974). A second mechanism that can account for
the perceived stability of the external world is an internal process that adjusts
for the shift of the retinal image by recording and compensating for the direc-
tion and extent of the saccade (e.g., MacKay, 1973; Matin, 1972; Shebilske,
1977). Finally, the third mechanism, perhaps most relevant to the present
study, is that a more elaborate memory may persist across eye-movements
(e.g., Irwin, 1992). Any of a number of theoretical mechanisms may ex-
plain how a record is maintained across eye movements. Examples include
summation of information across visual fixations (Jonides, Irwin & Yantis,
1981), transaccadic fusion (e.g., Irwin, 1996; O’Regan & Levy-Schoen, 1983),
and a map-like representation of the environment (Hayhoe, Lachter, &
Feldman, 1991). Visual search models postulate similar integrative mech-
anisms (Palmer, 1995; Grossberg, Mingolla & Ross, 1984; Shore & Klein, in
press; Wolfe, 1994).

Evidence for a record across eye-movements comes from a variety of
tests including: detection of target displacement during saccades (Irwin;
1993), detection of changes across eye-contingent displays (e.g., Simons &
Levin, 1997), and localization of a target defined by separately fixated, yet,
superimposed display patterns (Hayhoe, Lachter & Feldman, 1991; Jonides,
Irwin & Yantis, 1981). However, Horowitz & Wolfe (1998) studied memory
across visual search through random repositioning of search stimuli across
trials, and found no influence on reaction time (RT) from the number of
items in the display (i.e., RT slopes). They concluded visual search is ran-
domly sampled, and thus, behaves as a memoryless system.

A preponderance of additional evidence suggests that if any memory
exists across eye-movements, it is extremely impoverished and by no means
representative of the external world (O’Regan, 1992). At best, a modicum of
spatial (i.e., Hayhoe, Lachter & Feldman, 1991) and some object information
(i.e., Irwin, 1996) may be retained across fixations. It is conceivable that the
only memory across eye-movements is a relatively simple one that serves to
facilitate our ability to select out useful information.

EXTERNAL VS. INTERNAL INFLUENCES ON SEARCH

Empirical studies on both eye-movement and overall visual search
RTs suggest that salient external information, such as high target-distractor
discriminability (Duncan & Humphreys, 1989), can guide both attention
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and search (Motter & Belky, 1998; O’Regan, 1992). A number of researchers
have gone so far as to suggest that the only memory involved in eye-
movement control is in the external world (O’Regan, 1992; Gibson, 1979).
Such an account is plausible when eye-movement function is regarded as
“exploratory” with eye-movements serving as a probing device selecting
out useful information for further use (i.e., O’Regan, 1992). Thus, “seeing”
via eye-movements may simply be the action of probing the environment
through changes in retinal sensations, and subsequently integrating these
sensations into one’s cognitive framework.

In the present study, rather than focus on external factors known to
guide eye-movements, we study the internal mechanism driving search. We
do so by focusing on a search condition where the external information is not
sufficient to “pull” search. Nevertheless, we expect the internal mechanism to
be highly sensitive to external sources, and thus highly adaptable to a variety
of circumstances (Fisher, Duffy, Young & Pollatsek, 1988). We further expect
such a mechanism to produce erratic, yet, deterministic search.

One compelling reason we might expect erratic search from an inter-
nally driven mechanism relates to the connection among eye movements,
attention and efficient search. Attentional orienting is a reasonable candi-
date for driving endogenous search since it has the property of selectivity
needed to achieve optimal information pick-up. Such a perspective linking
eye-movements to attention is justified to the extent that the two are strongly
correlated (e.g., Allport, 1987; McConkie & Rayner, 1976; Posner, 1980) as is
suggested by oculomotor-readiness theories (e.g., Klein, 1980; Remington,
1980). Even though attention is not necessary to guide eye movement, as
in the case of covert-orienting (Posner 1980), attention certainly has an in-
fluence (e.g., Remington, 1980; Shepard, Findlay, & Hockey, 1986). A link
between attention and eye-movements is especially likely in circumstances
where we voluntarily seek out a target of low-discriminability and external
cues are unavailable to guide search. Thus, we test search in a challenging
scene for a target that is not distinct from the surrounding background. In the
real world, such a task may arise when a radiologist tries to detect a tumor in
an x-ray, an air-traffic controller is on the look-out for intersecting blips (i.e.,
planes) on a radar screen, or a more common task may involve looking for
a particular object in a cluttered environment. In all of these search tasks,
the camouflaged environment provides a challenge to our visual system thus
permitting us to analyze the internal mechanism driving search.

SYSTEMATIC VS. NON-SYSTEMATIC SEARCH

A variety of strategies can be used to perform efficient search in a
challenging search scene. One simple yet systematic search strategy in a
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challenging environment may involve a binary sub-division of the visual field
until the full field has been thoroughly searched (i.e., Shannon’s information
theory, 1948), or simply a systematic left-to-right, top-to-bottom search (e.g.,
Bouma & Bouhuis, 1984; Kolers, 1976). Additional strategies might include
search guided by expectations (Kowler, 1989), gathering information from
previous fixation (Motter & Belky, 1998; Rayner & Pollatsek, 1981), or search
in a pattern resembling a random walk (Scinto, Pillamarri, & Karsh; 1986).
All of these search sequences involve dependencies in eye-movements and
implicate at least a short-term memory present across fixations, and, in some
cases, an attentional mechanism.

Although the more systematic search strategies would successfully guide
the visual system to find a target, these strategies would not be so effective if
time were limited or the target location changed over time. To be executed,
an “overly” systematic search requires a great deal of time and resources. A
less energy-intensive search might be one that is less systematic or perhaps
even random in covering the visual field. The literature documents numer-
ous examples of what appear to be non-systematic searches (e.g., Engle,
1977; Inditsky & Bodmann, 1980; Krendel & Wodinsky, 1960). Similarly, vi-
sual search in a complex environment often is reported as erratic (i.e., Ellis
& Stark; 1986; Engel, 1977; Inditsky & Bodmann, 1980; Kraiss & Knauper,
1983, or simply random (Krendel & Wodinsky, 1960; Groner & Groner, 1982;
Horowitz & Wolfe, 1998).

Additional studies have demonstrated the efficiency of random search,
in which successive eye fixations appear independent of one another and
every location that could potentially be visited, and on each trial, all locations
have an equal chance of being visited. Megaw & Richardson (1979) argue
that random search provides better coverage and more efficient search than
the systematic searches they observed (see also Locher & Nodine, 1974).
Of four subjects, the two systematic searches took longer (but had slightly
fewer misses) than two irregular search strategies. Engel (1977) and Kraiss &
Knaeuper (1983) also show that systematic search for an uncertain feature
target is no faster than random search. Widdel & Kaster (1981) further
illustrate this in their simulation, and Scinto & Pillalamarri (1986) provide
additional evidence that spontaneous human search is “nearly” random.

NON-SYSTEMATIC BUT DETERMINISTIC SEARCH:
COLORED NOISE

The presence of apparently random behavior in effective visual search
has led to our proposal that the human oculomotor system may have sub-
tle self-organizing deterministic properties that can produce complex search
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behavior. The erratic fluctuations produced by human eye movements may
be characterized by (pink) colored-noise, described below, and provide max-
imum coverage of the visual field at a minimum of computational cost.
A pseudo-random process, governed by a simple set of rules, would be
cost-effective in searching a complicated scene. Evidence for either a self-
organizing complex system or a chaotic system would reflect determinism
inherent to the system and support the notion that visual search does main-
tain memory across fixations.

A large number of natural systems including earthquakes (e.g., Bak &
Tang, 1989; Paczuski & Boettcher, 1996, population dynamics (Miramontes
& Rohani, 1998), and various cognitive and reaction time behaviors (Gilden,
1996; Gilden, Thornton, & Mallon, 1995) possess statistically similar dynam-
ical properties suggestive of such complex systems. These statistical proper-
ties occur independent of the particular details of the system.

Examination of the statistical properties of these systems’ fluctuations
has revealed dynamics with well-defined generic scaling properties in the
form of power laws (Bak Tang & Wiesnfeld, 1988). Power law relations,
obtained from the Fourier transform of fluctuations, reveal long-term influ-
ences that may be the product of a simple yet flexible process: one that may
be useful in searching efficiently for an item in a cluttered environment.

Behavior governed by power laws has a fractal structure with the im-
portant properties of an irregular (non-integer) shape, infinite detail, and
self-similarity across all scales of the system (e.g., Mandelbrot, 1967). These
systems are complex in that they consist of many interacting individual com-
ponents and no single characteristic scale is best suited to describe them. In
other words, there is not just one time scale that controls the temporal evo-
lution of these systems: The means and variances depend on the size of the
sampling resolution. Although the (dynamical) response of the systems is
complex, the simplifying aspect is that the statistical properties are described
by simple power laws.

The self-similarity of fractals appears in fluctuations that occur in the
same proportion at all scales, and offers a high degree of statistical re-
dundancy to permit a compact representation. The amount of information
needed to be stored is reduced to a unique pattern plus a simple iterative
function. Because of its compactness, fractals are currently used to store dig-
ital information (Barnsley, Devaney, Mandelbrot, Peitgen, Saupe & Voss,
1988; Watson, 1987), and also appear to be a suitable candidate for coding
in the human visual system.

In a particular form of power scaling, those dominated by low frequen-
cies, the temporal phenomenon scales as the inverse of the frequency ( f ), or
as 1/ f noise. Bak et al (1987) suggest that these systems, with a power spec-
tral exponent of α = −1.0 (i.e., f α), consist of many interacting constituents,
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are ubiquitous in nature (see Bak, 1996 and examples above), and under
many conditions, are dynamical systems which organize themselves into a
state with a complex but rather general structure.

One proposed model of these systems is Self-Organized Criticality
(SOC5; Bak et al, 1987). In the SOC model, dramatic change, or critical-
ity, occurs from the local interaction of the system’s component parts. Such
changes give rise to the self-organization within the system, wherein pat-
terns develop in the absence of a controlling agent. The simplicity of the
local rules with which neighbors interact is another notable feature in light
of the resulting complex behavior, and the ease with which SOC can easily
be generalized to a neural network that can evoke perceptual changes (Aks,
Nokes, Sprott & Keane, 1998). Here local interactions can occur through
lateral inhibitory and excitatory effects across neurons, and these can pro-
duce perceptual changes via threshold mechanisms (i.e., Stassinopoulos &
Bak, 1995).

PREDICTION

We believe the human oculomotor system may have subtle self-
organizing properties that can produce erratic fluctuations in search be-
havior. Furthermore, we argue that this complex behavior is a cost-effective
strategy for searching a complicated scene—such a search can provide max-
imum coverage of the visual field at a minimum of computational cost. Evi-
dence for such a self-organizing complex (or chaotic6) system would reflect
determinism inherent to the system, and support the notion that visual search
maintains a memory across fixations.

Recent applications of dynamical approaches to other cognitive and per-
ceptual phenomena (Kelso, 1992; Port & Van Gelder, 1995; Pressing, 1999)
show great promise for application to the visual search system. Our proposal
that the human visual system may be driven by a deterministic process with
subtle but important self-organizing properties is tested here in a challenging

5Bak’s SOC theory is currently under debate as to whether it is a reliable model of 1/ f dynam-
ics. Alternative models under investigation maintain many similar properties including simple
rules producing complex behaviors and self-organization (e.g., Miller, Miller & McWhorter;
1993; De Los Rios & Zhang, 1999). Thus SOC or similar alternatives could account for de-
scribed data trends.

6Alternative to SOC, efficient search may be accomplished by a random-in-appearance, yet,
chaotic process. Characteristics of chaotic determinism that make such systems a suitable
candidate for a visual search mechanism are similar to those of complex systems. First, this
deterministic process possesses fractal structure and has the advantage of being able to store
unlimited information. Second, given the simplicity of the underlying code, a chaotic process
may produce an efficient search strategy of pseudo-random sampling in a situation where
the target is uncertain. A third property (unique to chaotic systems) of sensitivity to initial
conditions can afford the system flexibility.
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visual search task. Our analysis, described in the Methods section, focuses on
the impact of time on the resulting probability distributions and power spec-
tra. We look for scale-invariance in eye movements by evaluating whether
the means and variances of these data distributions change over time, and
whether their power spectra can be modeled by power laws. Finding a scale
invariant perceptual system, characterized by a power law function, would
suggest that there is determinism and compact coding of information in this
system (i.e., Voss, 1992). Furthermore, evidence of SOC in the perceptual
system, as indicated by 1/ f power laws, would present another illustration
of a complex system with a simple underlying dynamic—one that can po-
tentially account for the flexibility of our visual system in adapting to novel
environments.

METHOD

Subjects

One male undergraduate student from the University of Illinois par-
ticipated in the visual search experiment. He received $6.00 per hour for
participating in the experiment.

Stimuli and Apparatus

The visual search task consisted of eighty-one 0.43◦ items. The target
was an upright T, and the distractors were Ts rotated 90◦, 180◦, and 270◦ from
vertical. The experiment consisted of 400 target present trials lasting approx-
imately 2.5 hours. Search was subdivided into eight 20-min sessions with
approximately 5-minute intervening rest periods. The subject’s eye move-
ments were tracked over an 18◦ horizontal region on a Conrac computer
screen, with the overall display contained in a 754 × 497-pixel rectangle.
Screen and item dimensions allowed a minimum inter-element separation
needed for unambiguous fixation. Items were presented in a pseudo-random
arrangement so that all locations had an equal probability of being searched.
Eye movements were sampled on a Generation V dual purkinje-image (DPI)
tracker that was controlled by a 486 computer.

Procedure

The subject was instructed to search for the target and to fixate it once
it was found. The subject’s head was stabilized with a dental bite. Each trial
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began with a central fixation symbol lit for 1000 ms, followed by the display,
which remained visible until the observer responded. The task was to press
a hand-held button when the target was located.

The duration and x and y positions of the eyes were recorded at each
fixation. Each measure was treated as a set of data points whose spatial and
temporal properties were analyzed over the course of search. Additional
parameters of the eye-movements were used to map out the trajectory of
the eyes as they moved from fixation to fixation. These included differenti-
ation of consecutive eye-positions (e.g., xn − xn+1), eye movement distance
(x2 + y2)1/2 and eye movement direction (arctan (y/x)).

Analysis Strategy

Dynamical systems analyses are quite distinct from conventional vision
analyses. While the dynamic of visual search may be captured through fre-
quent sampling of behavior over time, the bulk of vision research examines
the average across trials of the same condition, and thus provides a station-
ary “snap-shot” of the impact of different manipulations on behavior. In
visual search studies, analyses are based on overall RTs which are a cumu-
lative record of a sequence of processes. Search efficiency and parallel vs.
serial mechanisms are thus inferred from the pattern of RTs across different
set size conditions (Treisman & Gelade, 1988)—a presumption fraught with
controversy (e.g., Townsend, 1971; 1976; 1990; Grossberg, Mingolla, & Ross,
1984; Humphreys, Quinlan & Riddoch, 1989; Pashler, 1987; Treisman, 1992;
Wolfe, 1996). Thus, visual search assessed solely by cumulative RT analysis is
necessarily an indirect assessment of underlying processes and consequently
more prone to erroneous inference.

Dynamical systems approach, similar to only a handful of conventional
eye movement studies, utilizes a direct numerical analysis of the data across
a sequence of behaviors (i.e., a series of eye fixations). Distinguishing a ran-
dom from a non-random data series is key and accomplished by looking
for subtle statistical regularities (i.e., Noton & Stark, 1971; Ellis & Stark,
1986; Groner & Groner, 1984). Finding dependencies in the data can re-
flect general structure in a noisy system. However, as shown earlier, pre-
vious studies of eye movement behavior show mixed results, perhaps due
to the diverse approaches used. Even among those studies showing non-
random patterns, descriptions of particular patterns of visual search is
limited.

To further understand potential structure underlying eye movements,
we use an assortment of linear and non-linear techniques to look for pat-
terns across data points in the series. We use analyses of probability distri-
butions, power spectra, Lyapunov exponent, and various measures of the
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fractal dimension, along with graphical display of data records with phase-
space plots, return maps, and Poincaré movies. The following description of
techniques is limited to linear analyses since, as described in the results, no
clear trends emerge on various tests of non-linear determinism. For a review
of nonlinear analyses see Hilborn (1994) or West & Deering (1995).

Our main diagnostic of temporal correlation involves performing fast
Fourier transform (Press, Flannery, Teukolsky & Vetterling, 1986) on the
fixation series and plotting the power (mean square amplitude) against fre-
quency. A power spectrum with a few dominant frequencies shows data
that can be well approximated by a Fourier series with just a few terms. Of
greater interest here is whether our data can be described by a power law,
and thus possesses scale invariance associated with a complex system. A
linear function on a double-log plot indicates the presence of a power law.
The regression slope of this function determines the power exponent. When
the exponent of the spectrum power law is α = −1.0, the given temporal
phenomenon scales as the inverse of the frequency ( f ) or as “1/ f noise.”
In this particular form of scaling, fluctuations occur in the same proportion
at all scales (ie., they are self-similar and scale invariant), and there exists a
great deal of fine structure in the data.

An important aspect of the spectral analysis is that it provides a useful
measure of the strength of memory across the system. This is important not
only in assessing whether memory exists across eye-movements but it quan-
tifies its strength in terms of the exponent making up the power law. The
steepness of the slope (on a log-log scale) reflects the duration of memory
(i.e., correlation across points): Brown 1/ f 2 noise has a steep slope indicat-
ing short-term correlation. Pink 1/ f 1 noise has a shallow slope indicating
extremely long time correlation, and white 1/ f 0 noise with a flat spectrum
indicates no correlation across data points.

The power spectra provide similar information obtained through auto-
correlation procedures. Consider a series of time signals. The signal fluctuates
up and down in a seemingly erratic way. Does the signal at t0 influence what
is measured at a later time t0 + t? We are not interested in any specific time
instant t0 but rather in the typical (i.e., the statistical) properties of the fluc-
tuating signal. The amount of dependence, or history in the signal can be
characterized by the temporal correlation function. If there is no statistical
correlation G (t) = 0. The speed with which G (t) decreases measures the
duration of the correlation or memory in the signal.

Iterated Function Systems (IFS) also provide sensitive tests for devi-
ations from randomness (Peak & Frame, 1994; Jeffrey, 1992; Sprott &
Rowlands, 1995; Mata-Toledo & Willis, 1997). The technique involves first
sorting the data from the minimum to the maximum value and then subdi-
viding the series into four segments in such a way that each segment contains
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the same number of points. The original unsorted data set is then normalized
and course-grained into four values, 1 to 4 representing the quartile to where
the data belong. The representation space is a square where the four corners
are labeled 1 to 4 in a clockwise direction (starting in the lower left corner).
Each value of the coarse-grained series is associated with the corner hav-
ing the same number. A point is plotted halfway between the center of the
square and the first point of the series. A second point is plotted half way
between the first plotted point and the second point in the series and so forth.

The graphical output of the IFS procedure is clumped patterns when
data contain colored noise and homogeneously filled spaces when the data
are uncorrelated. White 1/ f 0, pink 1/ f 1 and brown 1/ f 2 noise, are easily
distinguished. White noise is a space-filled uncorrelated process that uni-
formly fills its space of representation. At the other extreme, Brown noise
accumulates over the diagonals and some of the sides of the square leaving
most of the representation space empty. 1/ f noise produces self-similar re-
peating triangular structures of different sizes and accumulates, albeit in a
dispersed way, near the diagonals. Through visualization of the fine structure
of the time series, the IFS test can reveal correlation in the data, thus assisting
in characterizing the color of noise in a system.

RESULTS

Visual search produced, on average, 24 fixations (SD = 15) per trial
with each trial lasting 7.6 seconds (SD = 6.9 sec). Mean fixation duration
was 212 ms (SD = 89 ms) with 10,215 fixations across the complete search
experiment. The number of fixations decreased from 1888 to 657 across the
eight sessions with fixation duration tending to increase from 206 to 217 ms.
Mean deviation from last trial fixation to new target location was 0.4◦ visual
angle indicating a high degree of accuracy in actual target detection.

Figure 1 shows a scatter plot of eye fixations corresponding to horizontal
(x) and vertical (y) screen coordinates. There are clear clusters of fixations
in the center and near the boundaries, and intermittent gaps throughout.
Figure 2 shows a representative sample of the first differences across eye
position (yn+1 − 1/n). Trends were similar for x and y eye coordinate posi-
tions. While differences across y eye positions gradually increased over time,
differences across x eye positions tended to decrease over time. The same
trends occurred with relative dispersions (SD/M; Liebovitch, 1998)—a mea-
sure which reflects system contingencies as a function of sampling resolution.
Such changes in means and variance with fixation duration are characteristic
of fractal structures.
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Fig. 1. Scatter plot of 10,215 eye fixations for the entire visual search experiment. Eye fixations
are represented across horizontal (x) and vertical (y) screen coordinates in pixel units. There
are clear clusters of fixations in the center and near the boundaries, and intermittent gaps
throughout the display.

The delay plot in Fig. 3 shows a diffuse but positively correlated struc-
ture among adjacent data points that resembles colored noise (r = .90).
Superimposed on this pattern, is a clustering of adjacent fixations in the
central region and along the horizontal and vertical axes. The concentration
of data along the x-axis is the result of fixating the center of the screen at
the start of each trial with subsequent fixations falling along the wider band.
Removing the first three fixations for each trial eliminated this artifact but
did not affect any of the remaining analyses.

Fourier analysis of x and y fixations produced brown (1/ f 2) noise as
shown in Fig. 4. The brown noise persisted with or without the initial central
fixations, and was present in each of the eight individual sessions, although
there was some flattening of regression slopes at the extremes of the spectra.
Figure 5, shows the results of the IFS Clumpiness test. Clustering along the
diagonals reveals short-term, highly correlated consecutive data points typ-
ically found in brown noise. The additional fractal microstructure appearing
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Fig. 2. A representative sample of the fixation series for the first differences of eye position
(yn+1 − yn). Only fixations along the vertical coordinate are shown. The erratic pattern in the
fixation series are similar for horizontal eye positions.

in the IFS test reflects long-term but weaker correlation often associated
with pink noise.

The mean regression slope of the power spectra for the x and y eye-
position coordinates was α = −.23. This relatively shallow slope is due to the
spurious low frequency region. Differentiating data increases the steepness
of the regression slopes to approximately α = −.7 with the steepest slopes
persisting in the high frequency region of the curve. These 1/ f trends are
illustrated in the power spectra of Fig. 6, and the IFS Clumpiness test shown in
Fig. 7. A combined measure of distance across eye fixations (1x2 + 1y2)1/2

produced power spectra with 1/ f trends dominating the lower frequency
range, and 1/ f 2 trends dominating the high frequency range (Mean α =
−.47; Fig. 8). The corresponding IFS test, shown in Fig. 9, produced a clear
but distinct colored noise pattern with more diffuse clustering of data points
than those found in the raw and differentiated data sets. Random shuffling
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Fig. 3. The delay plot of highly correlated consecutive eye-fixations (r = .9). Superimposed on
this pattern, is a clustering of data in the central region and along the horizontal and vertical
axes. Data points are bounded by dimensions corresponding to those of the search screen.
Concentration of data along the horizontal-axis are the result of fixating the center of the
screen at the start of each trial with subsequent fixations falling along the wider band.

of x, y and distance data sets produced white noise. Thus, while the sequence
of absolute eye positions resembles a random walk, the differences in these
fixations possess a potentially important, longer-term dynamic characterized
by 1/ f pink noise.

To assess whether any of these trends were due to a deterministic
search versus a random search constrained by the boundary of the screen,
we simulated random eye movements on the computer with the simple
constraint to reverse the direction of movement if it exceeded the boundaries
of the display. The computer-generated data produced the same probability
distribution as the human data and clear 1/ f 2 trends. However, when dif-
ferentiated, the simulated data produced flat spectra characteristic of white
noise, whereas human data produced trends resembling pink-noise. Thus, it
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Fig. 4. Power spectra of vertical eye fixation series from the entire visual search experiment.
Total power equals mean squared amplitude. Brown (1/ f 2) noise trends emerge. Also shown
is a line depicting an exact 1/ f 2 power spectrum.

appears that our search system does not simply reduce to a random walk
constrained by boundary conditions.

Three additional parameters of the eye-movements examined were di-
rection and duration of the eye fixations, and duration of saccades between
fixations. Power spectra on all three produced relatively flat (1/ f 0) power
spectra. Differentiated data produced f/1 trends for direction and dura-
tion of fixation and white (1/ f 0) noise in the saccades. Finally, no clear
trends emerged on various tests of nonlinear determinism. The lower limit
estimate of the fractal dimension was D= 4.0 suggesting that visual search
for an item of unique orientation entails a highly complex system. If nonlin-
ear dynamics do exist in the search system under study, they are difficult to
decipher.
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Fig. 5. An IFS Clumpiness test is applied to the x and y fixation series with the latter shown
here. This technique is used to create a pattern that helps to visually characterize the color of
the noise since it produces clumped patterns for colored noise while producing homogeneously
filled spaces when the data is uncorrelated. In the IFS test, we start at an initial point, and then
read in the data, plotting a succession of points according to the iterative rule (described in the
text). The result is a scattering of points in the plane. The plot represents a trajectory, since the
position of each point is determined by all the previous points. Each point gives a short-term
history as the influence of previous fixations diminish over time. Any departure from a uniform
distribution of points is evidence for determinism. Clustering along the diagonals in the figure,
reveals the short-term highly correlated pattern associated with brown noise. The additional
fractal microstructure reflects longer-term, but weaker correlations often associated with pink
noise.

DISCUSSION

The dynamical systems approach offers novel theoretical ideas and tools
to help us understand a variety of psychological phenomena (Gilden, 1996;
Gilden, Thornton, & Mallon, 1995; Pressing, 1999). Here, we examined eye
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Fig. 6. Power spectra of first differences of x and y fixation series produced pink (1/ f ) noise.
Regression slopes of the power spectra are α = −.6 in the high frequency region of the curve.
Overall slopes were α = −.23 including the spurious low frequency region. Also shown is a
line depicting an exact 1/ f power spectrum.

movement behavior using this approach to explore the underlying mecha-
nisms guiding complex visual search. We predicted that the human visual
system might produce a complex, yet deterministic, search when explicit
information is unavailable to guide the eyes to a target. We use dynamical
systems analyses to present a novel perspective to the study of eye move-
ment behavior, and to contribute the new insights to the debate in the
visual-cognitive literature which is currently focused on whether memory
plays a role in guiding visual search (e.g., Horowitz & Wolfe, 1998;
Kristjansson, 2000; Shore & Klein, in press).

Memory-based theories of scanning suggest, as common sense might,
that when searching for an item, the rejected items should be noted in some
fashion so that effort is not expended in re-examining already searched items.



P1: Vendor/GOQ/GCR/GCP P2: GAY/GDP

Nonlinear Dynamics, Psychology, and Life Sciences [ndpl] PH051-340302 October 3, 2001 10:38 Style file version Oct 23, 2000

1/ f Dynamics in Visual Search 17

Fig. 7. Results of the IFS Clumpiness test of differentiated vertical (y) fixations. A similar
pattern emerged for horizontal (x) fixations. The diffuse fractal microstructure reflects longer-
term correlations appearing weaker than those in the raw data. Both cases resemble patterns
associated with pink noise.

Such a mechanism is often referred to as “inhibitory tagging” (e.g., Klein,
1988; Klein & MacInnes, 1999). Moreover, popular theories of visual per-
ception suggest that information about the identity of objects is accumulated
over time (Treisman & Gelade, 1980; Grossberg, Mingolla & Ross, 1994).
According to both sets of theories, search utilizes information from previous
fixations to guide subsequent search.

Horowitz & Wolfe (1998) recently challenged the assumption that search
proceeds through either inhibitory tagging or identification of previously
searched items (as summarized in the introduction). Their findings of RTs
being unaffected by randomly repositioned items, together with recent re-
search showing that visual memory is often surprisingly poor (Rensink,
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Fig. 8. Power spectra of distance across eye fixations (1x2 +1y2)1/2. Pink 1/ f trends are
dominant in the lower frequency range and 1/ f 2 trends are dominant in the high frequency
range (Mean α = −.47). Also shown is a line depicting an exact 1/ f power spectrum.

O’Regan, & Clark, 1997; Simons & Levins, 1997), led to their proposal that
the visual system retains little information about the locations (or identity)
of objects over time, and instead acts on fleeting neural representations
that are overwritten by a change in the visual scene (Horowitz & Wolfe;
1998).

The argument that visual search does not keep track of the previously
searched spatial locations comes from examination of overall RTs of visual
search. Reliance on such a coarse measure of behavior means that subtle
contingencies in scanning behavior may be overlooked. These less obvious
forms of memory may be revealed instead through a direct analyses of the
eye movements themselves. Here, we ask whether memory exists in visual
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Fig. 9. Results of the IFS Clumpiness test of distance between fixations (1x2 +1y2)1/2.
A unique colored noise pattern emerges with more diffuse clustering of data points than
those found in the raw data set.

search using a direct and intensive analysis of the eye movement data from
a single subject.7

7Our in-depth focus on a single data set is also relevant to the question of generalizability, and
the possibility that our male undergraduate subject might possess eye movements unique from
individuals representing other sectors of the population. However, an intensive focus on such
a single data set, and similar such sets in the field of nonlinear dynamics, presents a unique
situation in that the dynamical systems approach applies analysis tools that are only relevant
to individual analysis. Combining data sets, as is typically done in conventional analyses, can be
problematic for dynamical analyses in that the relevant unit of analysis, variability, is collapsed
across the group of subjects. The result is a loss of information that may be critical to detecting
complex data patterns. Only after a baseline performance is established from intensive focus on
a single-subject, should research be undertaken to explore the eye movements across different
individuals. Such future research will serve to evaluate the robustness of the present findings
and potentially uncover some interesting individual differences. Perhaps children well-versed
in video arcades or radiologists accustomed to challenging searches for tumors in ct-scans
might show search patterns distinct from individuals rarely exposed to such tasks.



P1: Vendor/GOQ/GCR/GCP P2: GAY/GDP

Nonlinear Dynamics, Psychology, and Life Sciences [ndpl] PH051-340302 October 3, 2001 10:38 Style file version Oct 23, 2000

20 Aks, Zelinsky, and Sprott

Our key finding that a sequence of fixations can be represented by
colored noise and a power law function, confirmed our prediction that
search may be guided by memory. Contrary to Horowitz & Wolfe (1998), we
found search behavior is not random and that contingencies do exist across
fixations. While much cognitive theory implicates tagging and inhibition of
return to previously visited items, the evidence of memory that we have
found involves general contingencies across fixations separate from any in-
fluence on overall search speed. Furthermore, the power law functions—
1/ f and 1/ f 2—found in search, show the system has scale invariant prop-
erties typically associated with a system optimized to adapt to a changing
environment. Since systems characterized by power functions are known to
be flexible, this suggests that the contingencies guiding search may play an
important role in selection of appropriate information in a dynamic array of
constantly changing environmental information.

Differences found in α in the 1/ f α trends across the relative vs. absolute
fixations (α = 1 vs. 2) further suggest differences in underlying mechanisms
(e.g., Musha, Sato & Yamamoto, 1991) as well as differences in duration
of the memory across search. The brown 1/ f 2 noise, or random walk, that
dominated the sequence of raw fixations likely results from constraints of the
physical movements of the subjects’ eyes—the sequential nature of our eye-
movements forces adjacent fixations to be relatively close to one another.
Additional support for such a random walk in raw eye fixations were found
in Scinto, Pillalamarri & Karsh’s (1986) eye movement model, and in our
simulation of random eye movements having only the single constraint of
reversing direction when a random movement exceeds the boundaries of
the search display.

Neither model, however, produces the 1/ f behavior that emerged in
our results (Figs. 6 to 9). In these data, power spectra and IFS tests on the
distance and direction across fixations revealed pink 1/ f noise. These results
suggest a long-term memory is maintained across the complicated search in
a manner that may involve use of a simple set of rules with self-organizing
properties (i.e., Bak Tang & Wiesenfeld, 1988).

The manner in which these rules operate can be understood using Bak’s
SOC sandpile model, as well as a neural network model where the con-
stituents (i.e., grains of sand or neuronal activation) can be represented as
a two-dimensional grid of interacting cells. In the case of a neuronal SOC
model, each cell possesses a certain degree of activation perhaps induced by
movement of the eyes to different locations. Spatially adjacent activation, on
the corresponding neural network, can be represented by a numerical value,
Z(x, y). As individual neurons are activated beyond a threshold say of 4, the
activity in the original site is dispersed to surrounding cells, incrementing the
activity in these regions by 1, {Z(x, y) −> Z(x, y)+ 1}, and thus depleting
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the activity in the original site to zero, Z(x, y)−> Z(x, y)− 4. In the ab-
sence of useful environmental information during visual search, the eyes may
be guided to sites that contain the highest level of activity among immedi-
ately surrounding cells, and evade local sites depleted in neuronal activity.
The global result can be a complicated search pattern that could easily be
mistook for a random search. Thus, finding 1/ f noise in eye movements il-
lustrates that search is not random, and instead may result from guidance of
eye movements by changes in intensity of neuronal activity across the net-
work of neurons. Such a model implicates a simple form of spatial memory
existing across the sequence of eye movements.

The 1/ f eye movements may also involve a cognitive mechanism such
as attention-based sampling and selection of useful information from a com-
plicated environment. Whether neuronal interaction involving the spread of
activation drives this selection process is an open question as is how such
a system can produce the rapid and effective search known to occur in hu-
mans. The answer may relate to the general finding that 1/ f systems offer
an optimal compromise between efficient recovery of information and the
tendency to err (Voss, 1992). The significance of these complex yet adaptive
behaviors remains open to future scientific inquiry.
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