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The role of target typicality in a categorical visual search
task was investigated by cueing observers with a target
name, followed by a five-item target present/absent
search array in which the target images were rated in a
pretest to be high, medium, or low in typicality with
respect to the basic-level target cue. Contrary to
previous work, we found that search guidance was
better for high-typicality targets compared to low-
typicality targets, as measured by both the proportion of
immediate target fixations and the time to fixate the
target. Consistent with previous work, we also found an
effect of typicality on target verification times, the time
between target fixation and the search judgment; as
target typicality decreased, verification times increased.
To model these typicality effects, we trained Support
Vector Machine (SVM) classifiers on the target
categories, and tested these on the corresponding
specific targets used in the search task. This analysis
revealed significant differences in classifier confidence
between the high-, medium-, and low-typicality groups,
paralleling the behavioral results. Collectively, these
findings suggest that target typicality broadly affects
both search guidance and verification, and that
differences in typicality can be predicted by distance
from an SVM classification boundary.

Introduction

Most of our everyday searches for pens, cups, trash
bins, and other common objects, are mediated by
categorical representations of the search targets. These
categorical search tasks, the search for an object from a
target category, are ubiquitous in our day-to-day lives,
yet still relatively poorly understood. The vast majority

of studies in the search literature have used paradigms
in which targets were cued using picture previews, or
had targets repeat throughout a block—scenarios
resulting in searchers knowing the specific appearance
of a given target. Decades of research using these
target-specific search paradigms have led to the
discovery of many factors affecting the efficiency of
search guidance to a target (Wolfe, 1994; Zelinsky,
2008), but it is unclear whether these findings might
generalize to categorical search. To the extent that
search guidance requires the extraction of specific
features from a target cue and the maintenance of these
features in visual working memory, guidance may not
be possible in categorical search tasks where targets are
designated by instruction or word cues and these
specific target features are unavailable.

Early work on this topic concluded that categorical
search is guided only weakly, or not at all (Vickery,
King, & Jiang, 2005; Wolfe, Horowitz, Kenner, Hyle,
& Vasan, 2004). However, more recently Yang and
Zelinsky (2009) quantified guidance using eye move-
ment measures and reached a different conclusion:
Although targets specified using a picture preview were
first fixated more often than categorically designated
targets, the proportion of immediate fixations on
categorical targets was still well above chance. Other
work elaborated upon this relationship between guid-
ance and categorical search, showing that the degree of
categorical guidance is proportional to one’s knowl-
edge of a target’s specific appearance (Malcolm &
Henderson, 2009; Schmidt & Zelinsky, 2009). Collec-
tively, this work suggests that categorical search can be
guided, and that this guidance improves with the
availability of target-identifying features specified by
the categorical cue.
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Even more recently, Maxfield and Zelinsky (2012)
investigated the effects of category hierarchy on
categorical search. Targets were designated using either
a word cue or a picture preview, and participants were
asked to search through an array of objects consisting
of a target or a categorical lure among non-targets from
random superordinate categories. Among the categor-
ical cue conditions, guidance, again measured as the
proportion of trials in which the target was initially
fixated, was strongest following a subordinate-level
target cue (e.g., ‘‘taxi’’). However, target verification,
measured as the time from target fixation to the search
judgment, was fastest for targets cued at the basic level
(e.g., ‘‘car’’), replicating the basic-level superiority
effect (Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976; see also Murphy, 2002) in the context of a search
task. This dissociation between search guidance and
verification by hierarchical level draws attention to the
importance of categories in modulating search behav-
ior, and the need to better understand the factors
affecting this modulation.

The present work explores another factor potentially
affecting categorical search—how representative or
typical a target is of its category. Typical exemplars of a
category are verified faster and more accurately than
atypical exemplars (Murphy & Brownell, 1985; Rosch
et al., 1976). These benefits are attributed to typical
objects being more likely to share features with the
other members of its category, thereby making the task
of category verification easier (Murphy & Brownell,
1985; Rips, Shoben, & Smith, 1973; Rosch, 1973, 1975;
Tversky & Hemenway, 1984). To the extent that the
features of typical objects are representative of those
from its category, and given that search guidance
improves with the availability of distinctive categorical
features, it follows that guidance should be best for
targets rated high in typicality.

In the only study to specifically address the role of
target typicality in categorical search, Castelhano,
Pollatsek, and Cave (2008) varied the typicality of the
targets in search arrays relative to basic-level categor-
ical precues. Consistent with the categorization litera-
ture (see Murphy, 2002), verification time was found to
be shorter for typical targets than for atypical targets.
However, the time between onset of the search display
and the first fixation on the target did not differ
between typical and atypical target conditions. To the
extent that target latency is a valid measure of search
guidance, this finding suggests that foreknowledge of
likely target features is not used to guide categorical
search. This finding also potentially points to an
important limitation on categorical search—a case in
which one search process (target verification) uses
information about the target category, but another
search process (guidance) does not.

Experiment 1

Given the potential theoretical importance of their
findings, we attempted to replicate the results from
Castelhano et al. (2008). We hypothesized that their
failure to find a relationship between target typicality
and categorical guidance may have been due to their
choice of distractors to include in the search displays.
Specifically, distractors were computer-generated im-
ages of objects created to roughly match the visual
features of the target that they accompanied in each
display, but not to share non-visual semantic attri-
butes with the target. It may be the case that this
attempt to match distractors to targets increased
target-distractor visual similarity (Alexander & Ze-
linsky, 2012), thereby creating lures that would work
against finding effects of target typicality on search
guidance. Like Castelhano et al. (2008), we used text-
label categorical cues and images of common objects
rated for typicality, but chose distractors randomly
without regard to their visual feature similarity to the
target categories. We also explored more stringent
measures of search guidance, such as the proportion
of immediate looks to the target. If Castelhano and
colleagues were correct in asserting that target
typicality does not modulate categorical guidance, we
would expect to find no effects of typicality on
immediate target fixations. However, if effects of
target typicality on search guidance are found, this
observation would suggest that typicality effects may
have been masked by target-distractor similarity
effects in the Castelhano et al. (2008) study, and that
object typicality is yet another shared factor linking
categorization and visual search.

Methods

Typicality rating task

Sixteen participants rated images from 42 basic-level
categories on a 1 (not at all typical) to 7 (highly typical)
scale, and raters were instructed to use consistently a
single scale for all of these categories.1 Raters were also
given the option of selecting 0 if they were unsure
whether an object was a member of the cued category.
If a 0 rating was indicated for a given object by two or
more raters, that object was excluded from use as a
target in the search experiment. Each norming display
depicted an image of an object accompanied by the
rating scale shown below the object and a text-label
shown above providing the object’s basic-level category
name. Using this procedure, 12 naturalistic objects
from each category, or 504 images in total, were
selected from the Hemera Photo-Objectse image set
and normed for typicality. Normed categories were
eligible for inclusion in the search experiment if the
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mean typicality of three category exemplars differed

from each other by post-hoc t test (a¼ 0.01,

uncorrected) following an ANOVA performed on the

high-, medium-, and low-typicality groups. Thirty-

seven categories met this inclusion criterion, and 36 of

these were used in the experiment (Figure 1). The end

result of this norming task was the creation of three 36-

object groups of search targets varying in their

typicality: high (M ¼ 6.20, S.E. ¼ 0.48), medium (M ¼
4.30, S.E. ¼ 0.60), and low (M ¼ 2.51. S.E. ¼ 0.68),

where each group contained one object from each of

the 36 categories.

Search task

Participants: Twenty Stony Brook University under-
graduates participated for course credit, none of whom
were participants in the rating task. All provided
informed consent prior to participation (in accordance
with the ethical standards stated in the 1964 Declara-
tion of Helsinki), and had normal or corrected-to-
normal vision by self-report. Of these, two participants
were excluded from the study based on failure to
comply with instructions as noted by the experimenter
prior to analysis of their data.
Apparatus and stimuli: Three exemplars, high-, medi-
um-, and low-typicality, from each of 36 categories

Figure 1. Category names and objects used as targets in Experiment 1. Typicality is ordered from left to right, with the leftmost object

from each three-object group being highly typical, followed by the medium- and low-typicality exemplars. All objects were presented

in color. łDenotes that this category was used in Experiment 2.
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were used as targets in the search experiment. Target
cues were the same basic-level category names used
during norming. Practice trials consisted of sixteen
categories and eight target exemplars not used in the
experimental trials. Distractors were 972 objects
selected at random and without replacement from the
Hemera Photo-Objectse image set, with the constraint
that no distractor was a basic-level exemplar of any of
the 36 experimental or 16 practice target categories. No
depictions of animals or people were included as targets
or distractors.

Eye movements were recorded using an Eyelink 1000
(SR Research) eyetracker, and manual responses were
registered using a gamepad controller interfaced
through the computer’s USB port. Saccades and
fixations were defined using the tracker’s default
settings. Target cues and search arrays were presented
on a Dell Trinitron UltraScan P991 monitor at a
refresh rate of 100 Hz. Search arrays consisted of five
objects, arranged in a circle around a central point
corresponding to starting fixation. A target was present
in half of the arrays in each 72-trial block. Arrays
subtended 198 of visual angle in diameter, and each
object was maximally 58 in height and width (average
size was 28–38). Viewing distance was fixed at 70 cm
from the monitor, using a chinrest and headrest, and
objects were displayed in color against a white
background.
Design and procedure: Written and verbal instructions
were provided to each participant, followed by a nine-

point calibration procedure needed to map eye
position to screen coordinates. Calibrations were not
accepted until the average and maximum tracking
errors were less than 0.458 and 0.98, respectively. Each
trial began with the participant pressing a button on
the game pad while fixating a black central dot
presented on a white background. This button press
caused a cue to appear, written in twenty-four point
Times New Roman font, for two seconds, followed by
another central fixation cross for one second, and then
by presentation of a search array (Figure 2).
Searchers indicated target presence or absence by
pressing the left or right triggers of the game pad.
‘‘Correct’’ or ‘‘Incorrect’’ appeared at the center of the
array following each response, with incorrect re-
sponses accompanied by a feedback tone.

There were 16 practice trials and 216 experimental
trials. The experimental trials were evenly divided into
target present/absent conditions and high-, medium-,
and low-typicality conditions, leaving 36 trials per cell
of the design. Trials were presented in three counter-
balanced blocks, with each block containing half
target-present trials that included a target from all 36
categories. Typicality and target presence were ran-
domized over trials within each block, and searchers
were allowed a short break following the first two
blocks of 72 trials. Calibration was repeated after each
break. No target or distractor was repeated through-
out the experiment, which lasted approximately 50
minutes.

Figure 2. Procedure for the categorical search task used in Experiment 1. Objects are not drawn to scale.
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Results and discussion

Significance is reported for contrasts having p ,

0.05, and Tukey’s LSD correction was used for all post-
hoc pair-wise contrasts following an overall ANOVA.
Accuracy rates differed significantly between each
typicality condition in target-present trials, F(2, 34) ¼
128.08, p , 0.001, g2¼ 0.883. High-typicality trials (M
¼ 94.4%, SD¼ 4.7) resulted in more accurate responses
than medium-typicality trials (M ¼ 81.2%, SD ¼ 8.4),
and both were more accurate than low-typicality trials
(M ¼ 63.9%, SD¼ 9.6). Consistent with the categori-
zation literature (Murphy & Brownell, 1985; Murphy,
2002), this result suggests that categorization difficulty
increased with decreasing target typicality in our task.
More interestingly, and given the fact that these targets
were considered exemplars of the cued class (as
indicated by the norming task), this finding suggests
that searchers were using target features that were
typical of the target categories—the mismatches
between these features and the low-typicality targets
were apparently so great that searchers often opted to
make target-absent responses, producing false negative
errors. Target-absent trials were relatively accurate (M

¼ 94.3%, SD¼ 3.4), with this level of accuracy differing
from the medium- and low-typicality target-present
conditions, t(17) � 6.93, p , 0.001), but not for
contrasts including the high-typicality condition. Sub-
sequent analyses include data only from correct target-
present trials.

Following previous work, we segregated our analysis
of search performance into epochs of search guidance
and target verification (Castelhano et al., 2008; Max-
field & Zelinsky, 2012; Schmidt & Zelinsky, 2009). Two
measures of search guidance were used: the time from
the onset of the search display until the participant
fixated the target (time-to-target) and the percentage of
trials in which the target was the first object fixated, a
more conservative measure that captures early search
guidance. Target verification was defined as the time
from first fixation on the target until the button
response indicating the target-present judgment. Sup-
plementing this measure, we also calculated total dwell
time on the target so as to exclude those rare cases
when participants made their search decision after
shifting gaze away from the target.

Contrary to Castelhano et al. (2008), who reported
no reliable effects of target typicality on search
guidance, we found significant differences in time-to-
target between our three typicality conditions, F(2, 34)
¼ 16.86, p , 0.001, g2¼ 0.498. As shown in Figure 3A,
high-typicality targets were fixated sooner than medi-
um-typicality targets (p , 0.01), which were fixated
sooner than low-typicality targets (p , 0.001). A
converging pattern is shown in Figure 3B for first-
fixated objects, F(2, 34)¼ 6.84, p , 0.005, g2¼ 0.287);
high-typicality targets were fixated first more often than
medium- (p , 0.05) and low-typicality targets (p ,
0.001), although the difference between the medium-
and low-typicality conditions failed to reach signifi-
cance (p¼ 0.23). Our failure to find a reliable difference
in first-fixated targets between the medium- and low-
typicality groups can likely be attributed to the high
errors rates observed for low-typicality targets. Because
highly atypical targets would be most likely to result in
false negative errors, and because these error trials were
excluded from the guidance analysis, the average
typicality of the remaining low-typicality objects would
be artificially inflated, shrinking the difference between
the medium- and low-typicality conditions. However,
consistent with previous work (Castelhano et al., 2008)
we did find the expected significant effect of target
typicality on verification times, F(2, 34)¼ 51.09, p ,
0.001, g2 ¼ 0.75. As shown in Figure 4, high-typicality
targets were verified faster than medium-typicality
targets (p , 0.001), which were verified faster than low-
typicality targets (p , 0.001). Target dwell times
showed a similar pattern, F(2, 34)¼ 112.43, p , 0.001,
g2 ¼ 0.869, suggesting that these differences reflect
actual target verification effects, and not search

Figure 3. Categorical guidance measures for correct target-

present trials from Experiment 1. (A) Mean time to target, and

(B) percentage of trials in which the target was the first object

fixated. Error bars show one standard error, and the dashed line

in (B) indicates chance.
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decisions related to the distractors fixated after leaving
the target.

In summary, we found that target typicality affects
both guidance and verification during categorical
visual search: The more typical a target is of the cued
category, the faster this target will be found and
verified. The observed relationship between target
typicality and verification times dovetails nicely with
the many studies in the categorization literature that
used a category verification task and found a similar
result (see Murphy, 2002), suggesting that these
observations may share a common theoretical expla-
nation. But of the two findings reported here, the
effect of typicality on guidance is the more theoreti-
cally important and controversial. This finding is
generally consistent with previous studies showing
that search guidance is proportional to the specificity
of the categorical cue (Malcolm & Henderson, 2009;
Maxfield & Zelinsky, 2012; Schmidt & Zelinsky,
2009), but is inconsistent with the null result reported
by Castelhano et al. (2008), who concluded that the
effect of typicality on search is limited to target
verification. We believe that this discrepancy can be
explained by the fact that the distractors in the
Castelhano et al. study were selected to share visual
features with the targets, and that this introduced a
high degree of target-distractor similarity in their task.
Because target-distractor similarity relationships be-
tween real-world objects can profoundly affect guid-
ance, both for target specific search (Alexander &
Zelinsky, 2012) as well as categorical search (Alexan-
der & Zelinsky, 2011), it may be that guidance to
target-similar distractors in the Castelhano et al. study
masked more subtle effects of target typicality. By
using categorically distinct but otherwise random
objects as distractors, these similarity relationships
would have been far weaker in our study, enabling us
to find the reported relationship between typicality
and search guidance.

Experiment 2

Experiment 1 helped to clarify the categorical search
literature by showing a relationship between search
guidance and target typicality that an earlier study had
argued did not exist (Castelhano et al., 2008), but our
work also produced a result raising a theoretically
important question—how might typical target features,
or more broadly, categorical features, be used to guide
search? Historically, the search literature has not
engaged this question, instead developing theories
aimed at explaining search guidance when the exact
features of a target are known, usually as a result of
seeing a picture cue of the target prior to search (e.g.,
Zelinsky, 2008). However, as the evidence for categor-
ical guidance mounts (Alexander & Zelinsky, 2011;
Maxfield & Zelinsky, 2012; Schmidt & Zelinsky, 2009;
Yang & Zelinsky, 2009), efforts are underway to extend
search theory to include categorical targets. It has been
suggested that categorical search can be modeled by
adopting techniques from computer vision to find the
visual features that best discriminate a target class from
non-targets, and using these features as a target
template much like the target-specific feature templates
that are thought to be created and used to guide search
following exposure to a target preview (Alexander &
Zelinsky, 2011). Following this suggestion, in recent
work target/non-target classifiers were trained, and the
distance between an object and this classification
boundary was used to estimate the categorical visual
similarity between that object and the target class—
with a larger distance indicating greater classifier
confidence (Zelinsky, Peng, Berg, & Samaras, 2013;
Zelinsky, Peng, & Samaras, 2013). Distance from a
classification boundary has even been used to create a
prioritized map of target evidence—a categorical target
map (Zelinsky, Adeli, Peng, & Samaras, 2013), which
was then used to model the guidance of eye movements
to categorical targets (following Zelinsky, 2008).

Experiment 2 was conducted to determine whether
this theoretical framework might also extend to target
typicality effects—can the effects of target typicality
observed in Experiment 1 be explained in terms of
distance from a classification boundary? To answer this
question we adopted techniques from computer vision,
which were needed in order to accommodate the images
of real-world objects used in the behavioral work.
Classifiers trained on a subset of the target categories
from Experiment 1 were used to obtain confidence
estimates for our high-, medium-, and low-typicality
target exemplars. To the extent that these confidence
estimates are higher for high-typicality targets than for
low-typicality targets, this difference would demon-
strate that the feature overlap relationships presumed
to underlie typicality effects can be made computa-

Figure 4. Mean target verification times for the basic-level

categorical cues in Experiment 1. Error bars show one standard

error.
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tionally explicit for the types of visually complex object
categories that populate our everyday experience.

Methods

Computer vision is a mature field, with many
features and learning methods at its disposal (Ever-
ingham, Van Gool, Williams, Winn, & Zisserman,
2010). Because our goal was to assess the general
feasibility of applying these tools to our question, and
not to choose methods with the goal of tailoring results
to best fit our behavioral data, for this experiment we
simply chose the most widely used feature and learning
method in this literature—the Scale Invariant Feature
Transform (SIFT) and the linear-kernel Support
Vector Machine (SVM). The SIFT feature represents
the structure of orientation gradients in local image
patches using 16 spatially-distributed histograms of
scaled and normalized edge energy (Lowe, 1999, 2004).
It is this histogram representation that endows SIFT
features with rotation and scale invariance, factors that
fueled the popularity of this feature. SVM is a powerful
and elegant method for learning a classification
boundary to separate exemplars of a target category
(positive samples) from non-target exemplars (negative
samples). In computer vision this learning is typically
done using sets of training images that are different
from those used for testing, with feature descriptors
applied to these training images and then clustered and
vector-quantized into a ‘‘bag of words’’ (Csurka,
Dance, Fan, Willamowski, & Bray, 2004).

In the present experiment, training images were
selected from the ImageNet database (http://www.
image-net.org/), which contains hundreds of exemplars
of thousands of object categories. Of the 36 basic-level
target categories used in Experiment 1, 19 of these
corresponded to nodes in the ImageNet hierarchy
(Figure 1). Our investigation was therefore limited to
this subset of 19 target categories. Additionally, 10
non-target categories were selected at random from
ImageNet, with the images in these categories used as
negative samples for training.2 In total, there were
19,000 images of targets used as positive training
samples (1,000/category) and 10,000 images of non-
targets used as negative training samples (1,000/
category). We used these positive and negative samples
and a publically available version of SVM (Chang &
Lin, 2001) to train 19 target/non-target classifiers, one
for each target category. This training was done using
the SIFT features and bag-of-words representation
(Lazebnik, Schmid, & Ponce, 2006) made available by
ImageNet, quantized using a code book of 1000 visual
words obtained by performing k-means clustering on a
random sampling of SIFT features extracted from
images in the ImageNet database (for additional

details, see http://www.image-net.org/
download-features). Testing consisted of using the
VLFeat implementation of dense SIFT (Vedaldi &
Fulkerson, 2008) to extract features from the high-,
medium-, and low-typicality exemplars for each of the
selected 19 target categories from Experiment 1 (57
target images in total), using the same vocabulary of
1000 visual words from the training bag-of-words
representation. Distances were then found between the
57 target images and the 19 corresponding SVM
classification boundaries, where larger distances again
indicate greater confidence in the classification. These
distances were finally converted to probabilities using a
probability estimation method (Platt, 2000), with these
probabilities being used as the classifier confidence
estimates reported in the results.

Results and discussion

Our goal was to assess the plausibility of using
methods from computer vision to capture the target
typicality ratings from our behavioral participants.
Object typicality is commonly believed to decrease with
increasing distance between the features of an object
exemplar and the features that define that object’s
category (Murphy & Brownell, 1985; Rips et al., 1973;
Rosch, 1973, 1975; Tversky & Hemenway, 1984); the
larger this distance, the less overlap between these
features and the more atypical the exemplar. To the
extent that this relationship is also true for purely visual
features, and in particular the visual features for the
common object categories used in Experiment 1, it may
be possible to use an exemplar’s distance from an SVM
classification boundary to predict its typicality (see also
Zelinsky, Peng, Berg, et al., 2013; Zelinsky, Peng, &
Samaras, 2013). We conducted this analysis and found
significant differences between the mean classifier
confidence values for target exemplars in the three
typicality conditions, F(2, 54)¼ 6.02, p , 0.005, g2¼
0.182); the more typical a target was rated of its
category, the more confident its classification as a target
(ML¼0.25, SD¼0.20,MM¼0.37, SD¼0.30, andMH¼
0.53, SD¼0.25 in the low-, medium-, and high-typicality
conditions, respectively). This finding suggests that
classifier confidence derived from purely visual features
(SIFT) and straightforward methods from computer
vision (SVM with bag-of-words) may be a reasonable
predictor of behavioral typicality judgments.

General discussion

This study explored the relationship between object
typicality and categorical search from a behavioral and
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computational perspective. In Experiment 1 we repli-
cated the effect of target typicality on verification times
previously reported by Castelhano et al. (2008), but
failed to replicate their null result showing no effect of
typicality on search guidance. We found that increasing
target typicality not only resulted in the faster
verification of search targets, it also resulted in their
preferential fixation. In Experiment 2 we trained
computer vision classifiers on a subset of these target
categories and showed that classifier confidence pre-
dicted the low-, medium-, and high-typicality judg-
ments from behavioral raters. Both of these
experiments have important implications for search
theory.

The behavioral finding that target typicality affects
search guidance adds to the rapidly accumulating body
of knowledge about categorical search. Whereas
categorical search was once believed to be unguided
(Vickery et al., 2005; Wolfe et al., 2004), we now know
that categorical guidance does exist (Yang & Zelinsky,
2009). We also know that this guidance is proportional
to the degree of target-specifying information in the
categorical cue (Schmidt & Zelinsky, 2009), that
guidance depends on the categorical level at which the
target is specified (Maxfield & Zelinsky, 2012), and,
with the present work, that categorical guidance is
modulated by target typicality. Guidance even exists to
objects that are just visually similar to the categorical
target (Alexander & Zelinsky, 2011: Zelinsky, Peng, &
Samaras, 2013).

Methods from computer vision are valuable in
specifying the information used to mediate these many
factors affecting categorical search guidance. Recent
work borrowing techniques from computer vision has
shown that it is possible to model categorical guidance
using purely visual features (Zelinsky, Adeli et al., 2013;
Zelinsky, Peng, Berg et al., 2013). The logic is
straightforward: To the extent that a classifier learned
from computer vision features is able to predict the
effect of some factor on categorical search, we know
that the influence of that factor can be purely visual
because visual information is all that could be captured
by these features. This is not to say that guidance from
the semantic properties of objects does not exist
(Hwang, Wang, & Pomplun, 2011), only that these
hypothetical higher-level factors are unnecessary to
explain categorical guidance. Extending this reasoning
to the current study, an effect of target typicality on
search guidance and verification can be mediated by
purely visual information extracted from pixels in
images. More generally, this modeling work suggests
that it is possible to learn the visual features that
discriminate a target class from non-targets, and to use
these features as a guiding template in much the same
way as features actually extracted from a picture
preview of the target. This suggestion is important as a

reliance on a picture preview is overly restrictive and
unrealistic—picture previews simply do not exist in the
vast majority of our everyday searches. With the
present quantitative demonstration of purely visual
categorical guidance, there is now a means to move
beyond the picture preview and to start addressing the
types of categorical search tasks that occupy our day-
to-day lives.

As knowledge about categorical search grows, it is
inevitable that connections will be made to the
categorization literature, and this is a second contri-
bution of the present work. Previously it was found
that target verification in a categorical search task
shows a standard basic-level advantage (faster verifi-
cation following a basic-level categorical cue; Rosch et
al., 1976), but that search guidance was strongest for
cues specified at the subordinate level (Maxfield &
Zelinsky, 2012). The current work strengthens this
connection between search and categorization theory
by showing that object typicality—a core concept in the
categorization literature—also affects how efficiently
gaze is guided to a search target. Typicality effects are
widely believed to reflect the discriminative features
learned from a set of category exemplars, with
typicality decreasing with increasing distance from the
mean of these features (e.g., Reed, 1972; Rosch, 1975)
or the features of the most frequently occurring
exemplar (e.g., Medin & Schaffer, 1978; Nosofsky,
1986). We believe that a similar framework might
extend to a categorical search task; the features of an
atypical target may overlap with those of one or more
distractors nearly as much as the features learned for
that target category, resulting in the observed decre-
ments in search performance.

The approach adopted in Experiment 2 adds to this
intuitive framework a simple premise, that the feature
distance between an exemplar and a category can be
approximated by the distance from an SVM classifi-
cation boundary. Previous work has attached behav-
ioral (Zelinsky, Adeli et al., 2013; Zelinsky, Peng, Berg
et al., 2013; Zelinsky, Peng, & Samaras, 2013) and
neurophysiological (Carlson, Ritchie, Kriegeskorte,
Durvasula, & Ma, 2014) significance to these distances
(see also Jäkel, Schölkopf, & Wichmann, 2008, for a
more general discussion), although such interpretations
should be made cautiously; SVM forms boundaries to
maximize the classification accuracy of positive and
negative training samples, not to capture metrical
similarity relationships between those objects. Identical
classification boundaries might therefore form despite
underlying differences in visual similarity. Nevertheless,
we found that greater positive (towards the target
category) distances from the classification boundary
predict greater target typicality. Conversely, atypical
targets, because they are closer to the boundary of the
target category, would likely generate weaker guidance
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signals and might even be mistakenly categorized as
distractors as their distance becomes negative with
respect to the target classification boundary.

More generally, we believe this focus on classifica-
tion provides an opportunity to bridge the behavioral
categorization and computer vision literatures. Classi-
fication is the assignment of stimuli, or their features, to
categories based on learning derived through feedback,
and this problem has been approached from very
different perspectives. The behavioral categorization
literature is rich with formal models of this process: The
Generalized Context Model (Nosofsky, 1986), AL-
COVE (Kruschke, 1992), and SUSTAIN (Love,
Medin, & Gureckis, 2004) to name but a few (for a
review, see Kruschke, 2008). Some of these models even
form explicit decision bounds to separate the features
of Category A from those of Category B (Ashby &
Maddox, 1994; Maddox & Ashby, 1996). Classification
has also been extensively studied in the computer vision
literature (Everingham et al., 2010), with the problem
of object detection being the most relevant to the
present study.

These differing perspectives each have their strengths
and weaknesses. Models in the categorization literature
are essentially models of category learning, and great
importance is attached to how exposure to each new
instance of an exemplar changes slightly the probability
that subsequent exemplars will be assigned to a
category. In computer vision the more common
practice is to learn classifiers from training sets—the
emphasis here is on how well a classifier works (i.e.,
makes correct classifications) rather than on how well
the learning of a classifier maps onto human behavior.
Studies of perceptual classification also rely over-
whelmingly on very simple stimuli having a straight-
forward dimensional structure (see Ashby & Maddox,
2005, for a review). Whether they are lines of different
lengths or oriented Gabors, the psychological dimen-
sions of interest are clear, and this enables a clearer
focus on the underlying learning process that these
models are designed to explain. Computer vision
models, however, are designed for applications in the
real world and therefore do not have this luxury—they
must be able to work with images or videos of visually
complex objects and scenes having unknown dimen-
sional structure or else they are useless.

We showed that a model having questionable
psychological validity, one based on a linear SVM
classifier learned from SIFT features and labeled
training data, can nevertheless predict the typicality
ratings of search targets from visually complex real-
world categories. Given that this relatively generic
model lacked the assumptions of incremental learning
central to models from the categorization literature, the
implication of this demonstration is that these as-
sumptions are not essential to predicting typicality—

more important is probably the actual classification
boundaries that are learned, and not the learning
process per se. Following previous work (Zelinsky,
Adeli, Peng, & Samaras, 2013), future work will
attempt to build from classifier confidence values a map
of prioritized target evidence and use it to predict
effects of target typicality on the guidance and
verification processes expressed in the eye movements
made during categorical search.

Keywords: typicality, visual search, eye movements,
categorization classification
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Footnotes

1Of course there is no way of knowing whether this
instruction was actually followed, but to the extent that
raters adopted different scales for different categories
this eventuality would introduce error variance and
work against us finding the reported effects of typicality
in our guidance and verification measures.

2Note that there are multiple ways of selecting
negative samples for training a classifier, and how best
to do this is still an open question in computer vision
(Perronnin, Akata, Harchaoui, & Schmid, 2012; Zhu,
Vondrick, Ramanan, & Fowlkes, 2012). It is also true
that different compositions of training sets would
produce slightly different classifiers, and therefore
slightly different results. Two broad options were
available to us: to have every negative sample come
from a different non-target category (i.e., only one
exemplar per category), or to randomly choose a subset
of non-target categories and to use as negative samples
multiple exemplars of each. We adopted the latter

Journal of Vision (2014) 14(12):1, 1–11 Maxfield, Stalder, & Zelinsky 9



method so as to make the non-target categories more
comparable to the target categories (each category
consisted of 1000 exemplars). Importantly, no effort
was made to choose negative samples so as to fit our
behavioral data.
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